
Self-Evolving Petri Nets

Lorenzo Capra
Department of Informatics and Communication,

Università degli Studi di Milano, Italy
capra@dico.unimi.it

Walter Cazzola
Department of Informatics and Communication,

Università degli Studi di Milano, Italy
cazzola@dico.unimi.it

Abstract Nowadays, software evolution is a very hot topic. It is particularly complex
when it regards critical and nonstopping systems. Usually, these situations are tackled
by hard-coding all the foreseeable evolutions in the application design and code.

Neglecting the obvious difficulties in pursuing this approach, we also get the application
code and design polluted with details that do not regard the current system function-
ality, and that hamper design analysis, code reuse and application maintenance in
general. Petri Nets (PN), as a formalism for modeling and designing distributed/con-
current software systems, are not exempt from this issue.

The goal of this work is to propose a PN based reflective framework that lets everyone
model a system able to evolve, keeping separated functional aspects from evolutionary
ones and applying evolution to the model only if necessary. Such an approach tries
to keep system’s model as simple as possible, preserving (and exploiting) ability of
formally verifying system properties typical of PN, granting at the same time adapt-
ability.

Key Words: Petri Nets, Reflection, Software Evolution.

1 Introduction

Software evolution is becoming a very hot topic. Many applications need to
be updated or extended with new features during lifecycle. Software evolution
can imply complete system redesign, development of new features and their
integration in running systems. Evolution often takes place by foreseeing how
software could evolve at design-time (before it really needs to evolve) or by
directly patching software without analyzing situation and planning evolution
itself.

A good evolution is carried out through evolution of system design infor-
mation, and then through propagating these changes to implementation. This
approach should be the most natural and intuitive to use (because it adopts the
same mechanisms adopted during development phase) and it should produce the
best results (because each evolutionary step is planned and documented before
its operation).

At the moment software evolution, especially when related to critical and
non-stopping systems, is emulated by directly enriching original design informa-
tion (and consequently code) with aspects concerning possible evolutions. This
approach has several drawbacks:

– all possible evolutions are not always foreseeable;

– design information is polluted by details related to evolutionary design: for-
mal models turn out to be confused and ambiguous since they do not repre-
sent a snapshot of current system only;

– evolution is not really modeled, it is specified as a part of the behavior of
the whole system, rather than an extension that could be used in different
contexts;

– code and model pollution hinders application maintenance and reduces pos-
sibility of reuse.

PN, when used to model systems that could evolve, suffer from these problems
as well. At present, software evolution through evolutionary design is not sup-
ported by traditional PN classes. Normally it is achieved by merging the basic
model of a software system with information on the foreseeable evolutions of the
system itself. A similar approach pollutes the model with details not pertinent
to the current structure of the system. Pollution not only increases complexity of
formal models but hinders ability of existing tools of analyzing system properties
without considering all possible branches of evolution.

System evolution is an aspect orthogonal to (current) system behavior that
crosscuts both application code and design; hence it could be subject to sepa-
ration of concerns [Hürsch and Videira Lopes, 1995]. Separating evolution from
the rest of a system is worthwhile, because evolution is made independent of
the evolving system and the abovementioned problems overcame. Separation of
concerns could be applied to a PN-based modeling approach as well. Design
information (in our case, a PN modeling the system) will not be polluted by
non pertinent details and will exclusively represent current system functionality
without patches. This leads to simpler and cleaner models that can be analyzed
without discriminating between what is and what could be application struc-
ture and behavior. Reflection [Maes, 1987] is one of the mechanisms that easily
permits to separate this kind of concerns.

Reflection is defined as the activity, both introspection and intercession, per-
formed by an agent when doing computations about itself [Maes, 1987]. A re-
flective system is layered in two or more levels (base-, meta-, meta-meta-level
and so on) constituting a reflective tower ; each layer is unaware of the above
one(s). Base-level entities perform computations on the application domain enti-
ties whereas entities on the meta-levels perform computations on the entities re-

siding on the lower levels. Computational flow passes from a lower level (e.g., the
base-level) to the adjacent level (e.g., the meta-level) by intercepting some events
and specific computations (shift-up action) and backs when meta-computation
has finished (shift-down action). All meta-computations are carried out on a
representative of lower-level(s), called reification, that is kept causally connected
to the original level. For details look at [Cazzola, 1998].

Similarly to what we have done in [Cazzola et al., 2004], the meta-level can
be programmed to evolve the base-level structure and behavior when necessary,
without polluting it with extra code. In this work we apply the same idea to PN
domain. We propose a reflective framework that separates the PN describing a
system from the PN that describes how this system evolves when some events
occur. We here extend an early version [Capra and Cazzola, 2005], by tuning the
causal connection between base-level and meta-level in order to enhance paral-
lelism between base- and meta- computations. With respect to several proposals
recently appeared with similar goals [Cabac et al., 2005,Hoffmann et al., 2005],
our approach does not define a new PN paradigm, rather it sets the basis of
an evolutionary reflective framework relying upon consolidated classes of PNs.
That gives the possibility of using existing tools and analysis techniques in a
fully orthogonal fashion. The framework can be easily integrated to the Great-

SPN tool [Chiola et al., 1995], allowing software designers to analyze the current
system configuration and to simulate its evolution.

The rest of the paper is structured as follows: in section 2 we briefly present
the adopted PN formalisms; in section 3 we give an overview of the whole reflec-
tive framework introducing the adopted terminology, then we present the (high-
level) Petri net realizing the causal connection among the other components of
the system; in section 4 we show our approach in action; finally in section 5
and in section 6 we present some related work and draw our conclusions and
perspectives.

2 Well-formed Nets

Colored PNs [Jensen and Rozenberg, 1991] (CPN) are a major extension of PN
belonging to the High-Level PN category. This work relies upon Well-formed
Nets (WN) [Chiola et al., 1990], a CPN flavor retaining expressive power, char-
acterized by a structured syntax. This section introduces WN semi-formally, by
an example. Figure 1 shows the portion of the evolutionary framework (figure 3)
that removes a given node from the base-level PN modeling the system (encoded
as WN marking). The removal of a node has the side-effect of provoking the re-
moval of any arc connected to the node. Trying to remove a marked place or a
not-existing node cause a restart action. We assume hereafter that the reader
has some familiarity with ordinary PNs.

A WN is a tuple (T, P, {C1, . . . , Cn},C,W+,W−,H, Φ, Π,M0) where P is
the finite set of places, T is the finite set of transitions. With respect to ordinary
PN, places may contain “colored” tokens of different identity. C1, . . . , Cn are
finite basic color classes. In the example there are only two classes C1, and C2,
denoting the base-level nodes, and the different kinds of connections between
them, respectively. A basic color class may be partitioned in turn into static sub-
classes, denoted Ci =

⋃
j Ci,j . For instance class C1 is partitioned into places ∪

trans. For the sake of modeling, a multi-level partitioning will be adopted, where
for instance subclass places might be in turn refined in named ∪ unnamed.

C assigns to each s ∈ P ∪ T a color domain, defined as Cartesian prod-
uct of basic color classes: e.g. tokens staying at place BLreif|Arcs are triplets
〈n1, n2, k1〉 ∈ C1 × C1 × C2. A CPN transition actually folds together many
elementary ones, so that one talks about instances of a colored transition. In
figure 1 C(t), t 6= delAFromToN: C1; C(delAFromToN) : C1 × C1 × C1 × C2. An
instance of delAFromToN is thus a 4-tuple 〈n1, n2, n3, k1〉.

A marking M maps each place p to a multiset Bag(C(p)). M0 defines the
initial marking.

W−,W+ and H assign each pair (t, p) an (input, output and inhibitor, respec-
tively) arc function C(t) → Bag(C(p)). Any arc function is a (linear combination
of) function-tuple(s) 〈f1, . . . , fn〉, tuple components are called class-functions.
Each fi is a class-j function, C(t) → Bag(Cj), Cj being the color class on i-
th position in C(p). Letting F : 〈f1, . . . , fn〉 and tc : 〈c1, . . . , cm〉 ∈ C(t), then
F (tc) = f1(tc) × . . . fn(tc), where × denotes multi-set Cartesian product. Each
fi is expressed in terms of elementary functions: the only ones appearing in pa-
per’s WN models are the projection Xk (k ≤ m), defined as Xk(tc) = ck, and
the constants S and Sj,k, mapping any tc to Cj and Cj,k, respectively.

〈X2, X3, X4〉 in figure 1 (surrounding delAFromToN) is a function-tuple whose
1st and 2nd components are class-1 functions, while the 3rd one is a class-2
function: 〈X2, X3, X4〉(〈n1, n2, n3, k1〉) = 1·n2×1·n3×1·k1, that is 1·〈n2, n3, k1〉.

Φ associates a guard [g] : C(t) → {true, false} to each transition t. A
guard is built upon a set of basic predicates testing equality between projec-
tion applications, and membership to a given static subclass. As an example,
[X1 = X2 ∨X1 = X3](〈n1, n2, n1, k1〉) = true.

A transition instance tc has concession in M iff (i) W−(t, p)(tc) ≤ M(p), (ii)
H(t, p)(tc) > M(p), for each place p, and (iii) Φ(t)(tc) = true (>,≤,+,− are
implicitly extended to multisets). Π assigns a priority level to each transition. tc
is enabled in M if it has concession, and no higher priority transition instances
have concession in M. It can fire, leading to M′:

∀p ∈ P,M′(p) = M(p) + W+(t, p)(tc)−W−(t, p)(tc)

Restart transitions are used in our models (again for convenience, we might
always trace it back to the standard WN definition), denoted by prefix rest.

C1

BLreif|Nodes

C1

BLreif|Marking

C1 , C1 , C2

BLreif|Arcs

delAFromToN

π 3

[X1 =X2 or X1 =X3]

<X2 , X3 , X4 >
EndDelN

π 2

C1

<X
1

><X
1 >

startDelN

π 2

<X 1
>

<X
1

>

<X1 >

C1

<X
1

>

restart
<X1 >

deletingArcN

EvInt|delNode

clear_prio_X1

π 3[d(X1)=Tran]

<X1 >

NODE

<X
1 >

BLreif|Prio

Figure 1: a Well-formed Net

While the enabling rule doesn’t change, their firing makes a WN model go back
to the initial marking.

A reachability-graph is built starting from M0, in stochastic WN (SWN) [Chi-
ola et al., 1993] it is associated to a Markovian process. The particular syntax
of WN arc functions allows system symmetries to be implicitly embedded into
(S)WN models. This way efficient techniques can be applied, e.g. to build a com-
pact Symbolic Reachability Graph (SRG) (and a lumped CTMC), or to run a
symbolic discrete-event simulation.

The base-level class of nets (section 3) correspond to the unfolded version of
WN, that is, P/T nets with priorities and inhibitor arcs. One such net is formally
a tuple (T, P,W+,W−,H, Π,m0), where W+,W−,H are functions associating
to each pair (t, p) a weight in N. Analogously, a marking m is a mapping P → N.
The definitions of concession, enabling, firing given before are still valid (guards
have disappeared), but for replacing F (t, p)(tc) by F (t, p).

3 A Reflective Petri Net Model

The reflective Petri Nets approach we have developed quite strictly adheres to
the classical reflective paradigm [Cazzola, 1998]. It permits one to model an
application and separately all its possible evolutions, and to dynamically adapt
application model when evolution must occur.

The adopted reflective architecture (sketched in figure 2) is structured in
two logical layers. The first layer, called base-level PN, is represented by the
P/T net of the software system prone to be evolved; whereas the second layer,

guards checking

begin strategies

strategies

Reflective Framework

Shift Up Action

Base Level Petri Net

Evolutionary Meta-Program

Evolutionary Interface

Base-Level Reification

newP
delP newT

ext_ev2 start up ext_ev1

true

shift-down

Figure 2: A snapshot of the whole reflective system: the base-level
is the one prone to be adapted, the meta-level drives the
adaptation.

called meta-level is represented by the evolutionary meta-program; in our case
the meta-program is a WN composed by the evolutionary strategies that might
drive the evolution of the base-level PN. We realistically assume that several
strategies are possible at a given instant: one is selected in non-deterministic
way. Evolutionary strategies have a transactional semantics: either they succeed,
or leave the base-level PN unchanged.

The reflective framework, realized by a WN as well, is responsible for really
carrying out the evolution of the base-level PN. It reifies the base-level PN
into the meta-level as colored marking of a subset of places, called base-level
reification, with some analogy to what is proposed in [Valk, 1998]. The base-
level reification is updated every time the base-level PN enters in a new state,
and is used by the evolutionary meta-program to observe (introspection) and
manipulate (intercession) the base-level PN. Each change to the reification will
be reflected on the base-level PN at the end of a meta-program iteration, i.e.,

the base-level PN and its reification are causally connected and the reflective
framework is responsible for maintaining that connection.

According to the reflective paradigm, the base-level PN runs irrespective
of the evolutionary meta-program. The evolutionary meta-program is activated
(shift-up action), i.e., a suitable strategy is put into action, under two conditions
non mutually exclusive: i) when triggered by an external event, and/or ii) when
the base-level PN model reaches a given configuration.

Intercession on the base-level PN is carried out in terms of basic operations
on the base-level reification suggested by the evolutionary strategy, called evolu-
tionary interface, that permit any kind of evolution regarding both the structure
and the current state (marking) of the base-level PN.

Each evolutionary strategy works on a specific area of the base-level PN,
called area of influence. A conflict could raise when the changes induced by the
selected strategy are reflected back (shift-down action) on the base-level, since
influence area’s local state could vary, irrespective of meta-program execution.
To avoid possible inconsistency, the strategy must explicitly preserve the state
(marking) of this area during its execution. To this aim the base-level execution
is temporary suspended (using priority levels) until the reflective framework has
inhibited change to the influence area of the selected evolutionary strategy. The
base-level PN afterward resumes. With respect to our previous work [Capra and
Cazzola, 2005] this approach improves concurrency between levels.

The whole reflective architecture is characterized by a fixed part (the reflec-
tive framework WN), and by a part varying from time to time (the base-level PN
and the WN representing the meta-program). The framework hides evolutionary
aspects to the base-level PN. This approach permits a clean separation between
evolutionary model and evolving system model (look at Sect. 4 for seeing the
benefits), which is updated only when necessary. So analysis/validation we can
perform separately on both models, is not polluted by non relevant aspects.

3.1 Reflective Framework

A framework formalization in terms of WNs allows us to specify complex evolu-
tionary patterns for the base-level PN in a simple, unambiguous way.

The reflective framework (figure 3) driven on the content of the evolution-
ary interface performs a sort of concurrent-rewriting on the base-level Petri net,
suitably reified as a WN marking. Places whose labels have prefix BLreif1 be-
long to the base-level reification (set BLreif), while those having prefix EvInt

belong to the evolutionary interface (EvInt). Both categories of places represent
interfaces to the evolutionary strategy sub-model.

While topology and annotations (color domains, arc functions, and guards)
of the framework are fixed and generic, the structure of basic color classes and
1 Labels taking the form place name|postfix denote boundary-places

N
O

D
E

R
es

|n
ew

T

ad
d_

T

π
2

[d
(X

2
)=

U
nN

am
ed

T
]

<X1>

<X 2
>

E
vI

nt
|n

ew
Tr

an

N
O

D
E

R
es

|n
ew

P

ad
d_

P

π
2

[d
(X

2
)=

U
nN

am
ed

P]

<X1>

<X 2
>

N
O

D
E

ad
dN

od
e π

2

<X1>

N
O

D
E

<X
1>

<X
2>

<X
2>

<X
2>

<X
2>

<X1>

B
L

re
if|

N
od

es

N
O

D
E

st
ar

tF
lu

sh π
2

[d
(X

1
)=

Pl
ac

e]

<X1>

N
O

D
E <X1 >

en
dF

lu
sh

π
2

<X
1>

flu
sh

π
3

<X1 >

N
O

D
E

E
vI

nt
|in

cM

in
cM

p

π
3

[d
(X

1
)=

Pl
ac

e]

<X1 >

<X 1
>

N
O

D
E <X1 >

<X
1>

B
L

re
if|

M
ar

ki
ng

N
O

D
E

de
cM

p

π
3

[d
(X

1
)=

Pl
ac

e]

<X1 >

<X 1
>

<X 1
>

A
R

C

E
vI

nt
|n

ew
A

st
ar

tN
ew

A π
4

[(
d(

X
1

)=
Pl

ac
e

an
d

d(
X

2
)=

Tr
an

)o
r

(d
(X

1
)=

Tr
an

an
d

d(
X

2
)=

Pl
ac

e
an

d
d(

X
3

)=
i/o

)]

<X1 , X2 , X3 >

A
R

C <X1 , X2 , X3 >

ad
dA

π
3

<X1 , X2 , X3 >

ad
di

ng
A

rc

A
R

C <X1 , X2 , X3 >

<X1 , X2 , X3 >

B
L

re
if|

A
rc

s

A
R

C

st
ar

tD
el

A π
3

<X 1
, X 2

, X 3
>

<X1 , X2 , X3 >

A
R

C <X1 , X2 , X3 >

re
m

A

π
3

<X 1
, X

2
, X

3
>

<X 1
, X

2
, X

3
>

de
le

tin
gA

rc

de
lA

Fr
om

To
N

π
4

[X
1

=X
2

or
X

1
=X

3
]

<X
2

, X
3

, X
4

>

en
dD

el
A π

2

<X
1,X

2,X
3>

N
O

D
E

st
ar

tD
el

N π
2

<X
1

>

<X1 >

<X
1

>

N
O

D
E <X1 >

<X 1
>

E
nd

D
el

N π
2

<X1 >

N
O

D
E

E
vI

nt
|se

tP
ri

cl
ea

r_
pr

io π
3

<X1 >

ne
w

Pr
io

π
2

<X1 >

<X
1

>
cl

ea
r_

pr
io

_X
1 π

3

[d
(X

1
)=

Tr
an

]

<X
1>

N
O

D
E <X1 >

<X1>

<X 1
>

B
L

re
if|

Pr
io

do
_s

hi
ft

_d
ow

n

E
vI

nt
|sh

ift
D

ow
n

re
st

ar
t

<X1>

<X 1
>

<X
1

>

<X
1,X

2,X
3>

<X
1

>

<X
1

>
<X

1>
<X

1,X
2,X

3>
<X

1
>

<X
1
>

de
le

tin
gA

rc
N

flu
sh

in
gP

E
vI

nt
|F

lu
sh

P
E

vI
nt

|n
ew

N
od

e
E

vI
nt

|n
ew

Pl
ac

e
E

vI
nt

|d
el

N
od

e
E

vI
nt

|d
el

A
E

vI
nt

|d
ec

M

L
eg

en
d

C
1

:N
O

D
E

C
2

:A
rc

Ty
pe

A
R

C
:N

O
D

E
×

N
O

D
E
×

A
rc

Ty
pe

B
L

re
if

|P
ri

o

B
L

re
if

|P
ri

o

ad
d_

T
<X

2
>

ad
dN

od
e

<X
1

>[
d(

X
1

)=
Tr

an
]

F
ig

u
re

3:
A

de
ta

ile
d

vi
ew

of
th

e
fr

am
ew

or
k

im
pl

em
en

ti
ng

th
e

ev
ol

ut
io

na
ry

in
te

rf
ac

e.

the initial marking need to be instantiated for setting a link between meta-level
and base-level. In some sense they are similar to formal parameters, that are
bound to a given base-level PN.

3.1.1 Color Definitions

The framework basic color classes are C1 : NODE, C2 : ArcType. The definition
of the structure of class NODE, in particular, takes place at system start-up.
Letting BL: (Pb, Tb,W

+
b ,W−

b ,Hb,Πb,mb
0) be the base-level PN at system start-

up, we have:

NODE = Place︸ ︷︷ ︸
Pb︸︷︷︸

p1∪...pn

∪ UnNamedP︸ ︷︷ ︸
x1∪...xk

∪ Trans︸ ︷︷ ︸
Tb︸︷︷︸

t1∪...tm

∪ UnNamedT︸ ︷︷ ︸
y1∪...yr

∪ null

ArcType = i/o ∪ h

The above three-level partitioning of class NODE (that collects the set of
potential nodes of the base-level PN) into static subclasses may be considered as
a default choice, that might be adapted/refined depending on modeling needs.
Focusing on places, subclass Pb includes the base-level places, the only ones can
be explicitly referred to by means of constants when programming an evolution-
ary strategy. For that purpose, it is further partitioned into singletons. Subclass
UnNamedP instead contains places that might be added to the base-level with-
out being explicitly named. It should be set large enough to be considered as a
logically unbounded repository. Also the elements of this subclass can be referred
to by means of constants, but only to make it possible an automatic updating
of the base-level marking reification (as explained in the sequel). The structure
of subclass Trans is analogously defined.

Class ArcType identifies two types of WN arcs, input/output and inhibitor.
It is partitioned in two singletons.

The intuitive color domain definitions for the base-level PN reification are
given below:

∀p ∈ BLreif \ {BLreif|Arcs},C(p) : NODE

C(BLreif|Arcs) : ARC = NODE ×NODE ×ArcType

3.2 Base-Level Reification

The reification of the base-level into the framework, i.e., its encoding as a WN
marking, takes place at system start-up (initialization of the reification), and
just after the firing of any base-level transition, when the current reification is
updated (section 3.5).

Definition 1. The reification of a base-level PN (reif(BL)) is the marking:

M(BLreif|Nodes) =
∑

n∈Pb∪Tb
1 · n

M(BLreif|Prio) =
∑

t∈Tb
(Πb(t) + 1) · t

M(BLreif|Marking) =
∑

p∈Pb
mb

0(p) · p

∀p ∈ Pb, t ∈ Tb

M(BLreif|Arcs)(〈p, t, i/o〉) = W−

b (p, t)
M(BLreif|Arcs)(〈t, p, i/o〉) = W+

b (p, t)
M(BLreif|Arcs)(〈p, t, h〉) = Hb(p, t)
M(BLreif|Arcs)(〈t, p, h〉) = 0

The evolutionary framework’s colored initial marking (M0) is the reification of
base-level PN at system start-up.

Place BLreif|Nodes holds the set of base-level nodes; the marking of place
BLreif|Arcs encodes the connections between them: the term 2〈t2, p1, i/o〉 cor-
responds to an output arc of weight 2 from transition t2 to place p1. Transition
priorities are defined by the marking of BLreif|Prio: if t2 is associated to prior-
ity level 0, there will be the term 1〈t2〉 in BLreif|Prio. The above three places
represent the base-level topology: any change to their marking operated by the
evolutionary strategy causes a change to the base-level PN structure that will
be reflected at any shift-down from the meta-level to the base-level.

The marking of place BLreif|Marking defines the base-level (current) state:
the multiset 2〈p1〉 + 3〈p2〉 represents a base-level marking where places p1 and
p2 hold two and three tokens, respectively. At the beginning BLreif|Marking

holds the base-level initial state.
The marking of BLreif|Marking can be modified by the evolutionary strat-

egy itself, causing a real change to the base-level current state immediately after
the shift-down action. Conflicts and inconsistency due to concurrent execution
of several strategies is avoided by defining an influence area for each strategy;
such an influence area delimits a critical region that can be accessed only by one
strategy at a time. More details on the influence areas are in Sect. 3.4.

The meaning of each element of the BLreif interface is summarized in Ta-
ble 1. Let us only remark that some places of the interface (e.g. BLreif|Arcs)
hold multisets, while other (e.g. BLreif|Nodes) can logically hold only sets (in
that case the reflective framework has in charge elimination of duplicates).

Being subject to changes the base-level reification needs to preserve a well-
definiteness over the time. Let m be the support of multiset m, i.e., the set of
elements occurring on m with multiplicity > 0.

Definition 2. M is well-defined if (n1, n2: NODE, k: ArcType)

- M(BLreif|Marking) ⊆ Places ∩M(BLreif|Nodes)

- M(BLreif|Prio) ≡ Trans ∩M(BLreif|Nodes)

Evolutionary Interface (the asterisk means that the marking must be a set)
EvInt|newTran* EvInt|newPlace*

adds an anonymous transition to the
base-level reification.

adds an anonymous place to the base-
level reification.

EvInt|newNode* EvInt|FlushP*
adds a given new node in the base-level
reification.

flushes away the current marking of a
place in the base-level reification.

EvInt|IncM EvInt|decM
increments the marking of a place in
the base-level.

decrements the marking of a place in
the base-level.

EvInt|newA EvInt|delA
adds a new arc between a place and a
transition in the base-level reification.

deletes an arc between a place and a
transition in the base-level reification.

EvInt|delNode* EvInt|setPrio
deletes a given node in the base-level
reification (places must be empty).

changes the priority to a node in the
base-level reification.

EvInt|shiftDown*
instructs the framework to reflect the
changes on the base-level.

Base-Level Reification (the asterisk means that the marking must be a set)
BLreif|Nodes* BLreif|Marking

the content of this place represents the
nodes used by the base-level Petri net.

the content of this place represents the
current marking of the base-level PN.

BLreif|Arcs BLreif|Prio
the content of this place represents the
arcs used by the base-level Petri net.

the content of this place represents the
priorities used by the base-level Petri
net.

Table 1: The evolutionary interface API and the base-level reifica-
tion data structure.

- if n1 occur on M(BLreif|Arcs) then n1 ∈ M(BLreif|Nodes)

- 〈n1, n2, k〉 ∈ M(BLreif|Arcs) ⇒ 〈n1, n2〉 ∈ Place × Trans ∨ 〈n1, n2〉 ∈
Trans× Place ∧ k = i/o

The other way round, a well-defined WN marking provides a univocal represen-
tation for the base-level PN.

Definition 3. Let M be well-defined. The associated base-level PN (b level(M))
is such that Pb = Places∩M(BLreif|Nodes), Tb = Trans∩M(BLreif|Nodes),
∀p ∈ Pb,mb

0(p) = M(BLreif|Marking)(p), as concerns priorities ∀t ∈ Tb,
Πb(t) = M(BLreif|Prio)(t)− 1, finally arc functions W−

b ,W+
b ,Hb are set as in

definition 1 (except for reading equations from right to left).

From definitions above it directly follows that b level(reif(BL)) = BL. By
the way M0 is well-defined. Through the algebraic structural calculus for WN
introduced in [Capra et al., 2005] it has been verified that well-definiteness is
an invariant of the evolutionary framework (figure 3), and consequently of the
whole reflective model. The proof, involving a lot of technicalities, is omitted.

3.3 Evolutionary Framework Structure/Behavior

The evolutionary framework WN model implements a set of basic transforma-
tions (rewritings) on the base-level PN reification. Its structure is modular, being
formed by independent subnets (easily recognizable) sharing the BLreif inter-
face, each one implementing a basic transformation.

The behavior associated to the evolutionary framework is intuitive. Every
place labeled by the EvInt prefix holds a (set of) basic transformation com-
mand(s) issued by the evolutionary strategy sub-model. Every time a (multiset
of) token(s) is pushed in one of these places, a sequence of immediate transi-
tions is triggered that implements the corresponding command(s). A succeeding
command results in changing the base-level reification, that is, the marking of
BLreif places.

The implemented basic transformations are: adding/removing given nodes
(EvInt|newNode, EvInt|delNode), adding anonymous nodes (EvInt|newPlace,
EvInt|newTran), adding/removing given arcs (EvInt|newA,EvInt|delA), increas-
ing/decreasing the marking of given places (EvInt|incM, EvInt|decM), flushing
tokens out from places (EvInt|FlushP), finally, setting the priority of transi-
tions (EvInt|setPrio). The color domain of each place corresponds to the type
of command argument (either NODE or ARC), except for EvInt|newPlace,
EvInt|newTran, that are uncolored places.

Term 2〈p1〉 occurring on place EvInt|incM is interpreted as “increase the
current marking of place p1 of two”. Many commands of the same kind can
be issued simultaneously, e.g. 2〈p1〉+ 1〈p3〉 on EvInt|incM. Depending on their
meaning, some commands are encoded by multisets (as in the last examples),
while other are encoded by sets. Interface EvInt is described on Table 1 and is
implemented by the net on figure 3.

In some cases command execution result must be returned back: places
whose prefix is Res hold command execution results, e.g., places Res|newP and
Res|newT record references to the last nodes that have been added to the base-
level reification anonymously. Initially they hold a null reference. As interface
places, they can be acceded by the evolutionary strategy sub-model.

Single commands are carried out in consistent and atomic way, and they may
have side effects. Let us consider for instance deletion of an existing node, which
is implemented by the subnet depicted (in isolation) in figure 1. Assume that
a token n1 is put in place EvInt|delNode. First the membership of n1 to the
set of nodes currently reified as not marked is checked (transition startDelN).
In case of positive check the node is removed, then all surrounding arcs are re-
moved (transition delAfromToN), last (if n1 is a transition) its priority is cleared
(transition clearPrioX1). Otherwise the command aborts and the whole meta-
model composed by the reflective framework and the evolutionary strategy (see
also section 3.5.3) is restarted, ensuring a transactional execution of the evolu-

ARC

EvInt|Acard

flushCard

π 3 <X
1 ,X

2 ,X
3 >

ARC

<X
1 ,X

2 ,X
3 >

compCard

π 2 <X
1 ,X

2 ,X
3 >

<X
1 , X

2 , X
3 >

Res|Acard

endCard
<X1 , X2 , X3 >

flushPre

π 3

NODE,NODE

<X
1 ,X

2 >

Res|pre

ARC

<X
1 >

EvInt|PreSet

compPre

π 2

<X
1 >

<X1 , X2 >

ARC

<X
1 ,X

2 ,i/o>

<X1 , X2 , X3 >

BLreif|Arcs

endPre
<X1 >

restPre

π 4

<X 1
>

restCard

π 4

[X1 =X4 or X2 =X4]

<X 1
, X 2

, X 3
>

endCount

rest1 Count

π 4

[d(X1)6=Place]

rest2 Count

π 4 [d(X1)=Place]

NODE

<X 4
>

<X
1

>

<X
1 >

BLreif|Nodes

NODE
<X1 >

<X
1 >

<X
1 >

EvInt|CountTk

compNTk

π 2

<X
1 >

NODE

<X
1 >

BLreif|Marking

NODE
<X1 >

Res|count

flushCount

π 3

<X
1

>

<X 1
>

Figure 4: Basic introspection functions.

tionary strategy. A unique restart transition appears in figure 3, with input
arcs having an “OR” semantics.

Different priority levels are used to guarantee the correct firing sequence, also
in case of many deletion requests (tokens) simultaneously present in EvInt|delNode.
Boundedness is guaranteed by the fact that each token put on EvInt|delNode

is eventually consumed.
The other basic commands are implemented in a similar way. Let us only

remark that newly introduced base-level transitions are associated to the default
priority (1).

Priority levels in figure 3 are relative: after composing the evolutionary frame-
work WN model to the evolutionary strategy WN model, the minimum priority
in the evolutionary framework is set greater than the maximum priority level
used in the evolutionary strategy.

Any kind of transformation can be defined as a combination of basic com-
mands: for example “replacing the input arc connecting nodes p and t by an
inhibitor arc of cardinality three” corresponds to put the token 〈p, t, i/o〉 on
EvInt|delA and the term 3〈p, t, h〉 on place EvInt|newA. Who designs a strat-
egy (the meta-programmer) is responsible for specifying consistent sequences of
basic commands, e.g., he/she must take care of flushing the contents of a given
place before removing it.

3.3.1 Base-level Introspection

The evolutionary framework includes basic introspection commands. Observa-
tion and manipulation of base-level PN reification are performed passing through
the framework evolutionary interface; that enhances safeness and robustness of
evolutionary programming.

Figure 4 shows (from left to right) the subnets implementing the computation
of the cardinality (thereupon the kind) of a given arc, the preset of a given
base-level node, and the current marking of a given place (subnets computing
transition priorities, post-sets, inhibitor-sets, and checking existence of nodes,
have a similar structure).

As for the basic transformation commands, each subnet has a single entry-
place belonging to the evolutionary interface EvInt and performs atomically.
Introspection result is recorded on places having the Res| prefix, accessible by
the evolutionary strategy: regarding e.g., preset computation, a possible result
(after a token p1 has been put in place EvInt|PreSet) is 〈p1, t2〉 + 〈p1, t3〉,
meaning that the preset of node p1 is {t2, t3} (other results are encoded as
multisets). Since base-level reification could be changed in the meanwhile, every
time a new command is issued any previously recorded result about command’s
argument is cleared (transitions prefixed by flush).

3.4 The Evolutionary Strategy

The adopted model of evolutionary strategy (highlighted in figure 2) specifies
a set of arbitrarily complex, alternative transformation patterns on the base-
level (each denoted hereafter as i-th strategy or sti), that can be fired when
some conditions (checked on the base-level PN reification by introspection) hold
and/or some external events occur.

Since a strategy designer is usually unaware of the details about the WN
formalism, we have provided him/her with a tiny language that allows everyone
to specify his own strategy in a simple and formal way. The language syntax is
inspired by Hoare’s CSP [Hoare, 1985] as concerns control structures (enriched
with a few specific notations). As concerns data types, a basic set of built-in’s
and constructors is provided for easy manipulation of nets. The use of a CSP-like
language to specify a strategy allows its automatic translation into a correspond-
ing WN model. We will provide some examples of mapping from pieces of textual
strategy descriptions into corresponding WN models. In PN literature there are
lot of examples of formal mappings from CSP-like formalisms (e.g. process alge-
bras) to (HL)PN models (e.g. [Best, 1986] and more recently [Kavi et al., 1995]),
from which we have taken inspiration.

*[shift-up ? sh-up-occurred →
[

guard1; event1 ? event1-occurred → strategy1() �
guard2 → strategy2() �
true → strategy3() �

...
]

]

Listing 1: CSP code for the meta-program scheme

General Schema

The evolutionary meta-program scheme corresponds to the CSP pseudo-code2 in
listing 1. The evolutionary strategy as a whole is cyclically activated upon a shift-
up, here modeled as an input command. A non-deterministic selection of guarded
commands then takes place. Each guard is evaluated on base-level reification by
using “ad-hoc” language notations described in the sequel. Guard true means
that the corresponding strategy might be always activated at every shift-up.
A guard optionally ends with an input command that simulates occurrence of
external events.

A more detailed view of this general schema in terms of PN is given in
figure 5. Figure 5(a) shows the non-deterministic selection, whereas figure 5(b)
shows the structure of i-th strategy. Color domain definitions are inherited from
the evolutionary framework WN. An additional basic color class (STRAT =
st1 ∪ . . . stn) represents possible alternative evolutions

Focusing on figure 5(a), we can observe that any shift-up is signaled by
a token in the homonym place, and guards (the boxes on the picture, that
represent the only not fixed parts of the net) are evaluated concurrently, ac-
cordingly to the semantics of CSP alternative command. After the evaluation
process has been completed one branch (i.e., a particular strategy) is chosen
(transition chooseStrat) among those whose guard was successfully evaluated
(place trueEval). By the way, introspection has to be performed with prior-
ity over base-level activities, so the lowest priority in figure 5(a) is set higher
than any base-level PN transition, when the whole model is built. In case every
guard is valued false the selection command is restarted just after a new shift-up
occurrence transition noStratChoosen), avoiding any possible livelock.

Occurrence of external events is modeled by putting tokens in particular
“open” places (e.g. External|eventk in figure 5(a)). The idea is that such places

2 Recall that: i) CSP is based on guarded-commands; ii) structured commands are in-
cluded between square brackets; and iii) symbols ?, *, and � denote input, repetition
and alternative commands, respectively.

ShUp|shift-up

startMetaProgram

clearShUp

π 10

2

startGuardEvaluation

...

g1 false

g1 true

eval_g1

evaluate_g1

...

gi false

gi true

eval_gi

evaluate_gi

STRATEGY

<S st1 >

<S
st i

>

trueEval

STRATEGY

<S st
1 >

<S
st1 >

<S st i
>

<S st i
>

endEval

clearTrueEval

π 2

<X2 >

chooseStrat

π 3

<X
1 >

<S>

noStratChosen

<S>

<S>

STRATEGY

<X
1 >

<X1 >

<S>

chosenStrat

...

selected«St1 »

<S st 1
>

selected«Sti »

<S st
i >

begin strategy1

begin strategyi

...

External|Eventk

ShUp|shift-up

noStratChosen

noStratChosen

startMetaProgram

evolutionary
interface

(a) the strategy selection subnet

begin
strategyi

resume
strategyi

end
strategyi

NODE

«patterni»

NODE

isolating «patterni»
start

meta-program

base-level reification evolutionary
interface

shitf-down
action

compute(«patterni») isolate(«patterni»)

freeze(«patterni»)

unfreeze(«patterni»)
do strategyi

<X1>

<X1>
<X1>

del_nodeflush

π > πBL

framework

(b) the strategy structure

Figure 5: The meta-program generic schema.

should be shared with other sub-models that simulate external event occurrence
process. If one is simply interested in interactive simulation of the reflective
architecture, he/she might think of such places as a sort of buttons to be pressed
or released on demand.

The ith Strategy

The structure of the WN model implementing a particular evolutionary strategy
is illustrated in figure 5(b). It is composed of fixed and programmable (variable)
parts, that may be easily recognized in the picture.

It realizes a sort of two-phases approach: during the first phase (subnet-box
freeze(�patterni�)) the meta-program sets the local influence area of the
strategy, a portion of the base-level Petri Net reification that might be subject
to changes. That area is expressed as a language “pattern”, that is, a parametric
set of base-level nodes defined through the language notations, denoted by a
colored homonym place in figure 5(b). The pattern contents are flushed at any
strategy activation. A simple isolation algorithm is then executed that freezes the
strategy influence area reification, followed by a shift-down action as a result of
which freezing materializes at the base-level PN. The idea is that all transitions
belonging to the pattern, or that can change the marking of places belonging to it,
are temporary inhibited from firing, until the strategy execution has terminated
(the place pattern* holds the wider pattern image after this computation).

During the freezing phase the base-level model is “suspended” to avoid other-
wise possible inconsistencies and conflicts: this is achieved by forcing transitions
of freeze(�patterni�) subnet to have a higher priority than base-level PN
transitions. The freeze(�patterni�) sub-model is decomposed in turn in two
sub-models that implement influence area identification and isolation, respec-
tively. While the latter has a fixed structure, the former might be either fixed
or programmable, depending on designer needs (e.g. it might be automatically
derived from the associated guard).

After the freezing procedure terminates the evolutionary algorithm starts
(box labeled by do strategyi in figure 5(b)), and the base-level resumes from
the “suspended” state: that is implicitly accomplished by setting no dependence
between the priority of do strategyi subnet transitions (arbitrarily assigned by
the meta-programmer) and the priority of base-level PN transitions (in practice:
setting the base-level PN’s lowest priority equal to the priority level, assumed
constant, of do strategyi subnet). The only constraint forced on do strategyi

is that it can exclusively manipulate (by means of framework evolutionary in-
terface) the nodes of base-level reification belonging to the pattern previously
computed (this constraint is graphically expressed in figure 5 by an arc between
the do strategyi box and place �patterni�). As soon as the base-level PN en-
ters a new state (marking), the newly entered base-level state is instantaneously
reified into the meta-level. That reification does not involve the base-level area
touched by the evolutionary strategy, that can continue operating without in-
consistency. Before activating the final shift-down (that ends the strategy and
actually operates the base-level evolution planned by the strategy) the tempo-
rary isolated influence area is unfrozen in a very simple way.

The described approach is more flexible than a brute-force blocking one
(where the base-level is suspended for the whole duration of the strategy) while
guaranteeing a sound and consistent system evolution. It better adheres to the
semantics and the behavior of most real systems (think e.g. of a traffic control

NODE

BLreif|Marking

base-level petri net

meta-level petri net

t1

<S
p 1

>+
2<

S
x 1

>

<S
p 2

>

2

x1

2

p1 p2

ShUp|shift-up

Figure 6: Reification implemented at PN level.

system), that cannot be completely suspended while their evolution is being
planned.

3.5 Casually connecting base-level and meta-program

The base-level and the meta-program are (reciprocally) causally connected through
the reflective framework.

3.5.1 Shift-up action

The shift-up action is realized for the first time at system start-up. The idea (il-
lustrated in figure 6) is to connect in transparent, fully automatic way the base-
level PN to the evolutionary framework interface by means of colored input/out-
put arcs drawn from any base-level PN transition to place BLreif|Marking of
base-level reification. Any change of state at base-level PN provoked by transition
firing is instantaneously reproduced on the reification, conceptually maintaining
base-level unawareness about the meta-program. The firing of base-level tran-
sition t1 in the picture results in withdrawing one and two tokens from places
p1 and x1, respectively, and in putting one in p2. While token consuming is em-
ulated by a suitable input arc function (〈S p1〉 + 2 · 〈S x1〉), token production
is emulated by an output arc function (〈S p2〉). The splitting of static subclass
UnNamedP allows anonymous places introduced into the base-level (x1) to be
referred to by means of WN constant functions.

Transition t1 signals its occurrence to the meta-program by putting one to-
ken in the uncolored interface-place ShUp|shift-up, that activates the meta-
program itself (figure 5(a)).

3.5.2 Shift-down action

The shift-down action is the only operation that cannot be directly emulated at
PN (WN) level, but that should be managed by the environment supporting the
reflective architecture simulation. This is not surprising, rather is a consequence
of the adopted choice of a traditional PN paradigm to model an evolutionary
architecture. The shift-down action takes place when the homonym uncolored
(meta-)transition of the framework (figure 3) is enabled. This transition has the
highest priority level within the whole reflective model, its occurrence replaces
the current base-level PN with the PN described by the current reification, ac-
cording to definition 3.

After a shift-down the base-level restarts from the (new) base-level initial
marking, while the meta-program continues executing from its state preceding
the shift-down.

3.5.3 Putting all together

The behavior of the whole reflective model (composed of the base-level PN, the
evolutionary framework interface and the meta-program) between consecutive
shift-downs can be represented using a uniform, PN-based approach. We are
planning to extend the GreatSPN tool (designed for the WN formalism) to be
used as simulation environment of our reflective architecture. To that purpose
it must be integrated with a module implementing causal-connection between
base-level and meta-program.

The reflective framework, the evolutionary meta-program, and the base-level
are separated sub-models, sharing three disjoint sets of boundary places: the
base-level reification, the evolutionary interface, and the places holding basic
command results. Their interaction is simply achieved through superposition of
homonym places. This operation is supported by the Algebra module [Bernardi
et al., 2001] of GreatSPN. Following the model composition, absolute priority lev-
els must be set, respecting the reciprocal constraints between components earlier
discussed (e.g. framework lowest priority > meta-program highest priority). Fi-
nally, the whole model initial marking is set according to definition 1 as concerns
base-level reification, putting colored token null in both places Res|newP and
Res|newT (figure 3), and one token in place startMetaProgram (figure 5(a)).

3.6 Meta-Language Basic Elements

The meta-programming language disposes of four built-in types NAT , BOOL,
NODE, ArcType and of the Set and Cartesian product constructors. The arc
(ARC : NODE×NODE×ArcType), the arc with multiplicity (ArcM : ARC×
NAT) and the marking (Mark : NODE × NAT) are thus introduced as new

types, in this way a multi-set can be represented as a set. Static subclass names
(e.g., Place, Tran) can be used to denote subtypes or constants (in case of
singletons), and new types can be defined on-the-fly by using set operators.

Each strategy is defined in terms of basic actions, corresponding to the basic
commands described in section 3.3. Their signatures are:

– newNode(Set(NODE)), newPlace(), newTran(), remNode(Set(NODE));

– flush(Set(Place))

– addArc(Set(ArcM)), remArc(Set(Arc));

– incMark(Set(Mark)), decMark(Set(Mark))

– setPrio(Set(Tran))

A particular version of repetitive command can be used. Letting Ei be a set
(according to Grammar 1):

*(e1 in E1, ..., en in En)[�command�]

makes �command� to be executed iteratively for each e1 ∈ E1, . . . , en ∈ En; at
each iteration, variables e1, . . . , en are bound to particular elements of E1, . . . , En,
respectively. If Ei is a color (sub-)class, then we implicitly refer to Ei elements
that belong to the base-level reification.

The meta-programmer can refer to base-level elements either explicitly, by
means of constants, or implicitly, by means of variables. By means of assignments
p = newPlace(), t = newTran() it is also possible to add unspecified nodes to
the base-level, afterwards referred to by variables p, t.

Base-level introspection is carried out by means of simple net-expressions
that allow the meta-programmer to specify patterns, i.e., (parametric) base-
level portions that meet some requirements on structure/marking. The syntax
for patterns and guards is shown in Grammar 1 in BNF form. The symbols:
pre(n), post(n), hset(n), #p, card(a), denote the pre/post-sets of a base-level PN
node n, the set of elements connected to n via inhibitor arcs, the current marking
of place p, and the multiplicity of an arc, respectively. They are translated into
basic introspection commands (figure 4).

A pattern example is: {p : Place |#p > #p1 ∧ isempty(pre(p) ∩ hset(p))},
where p1 is a constant, and p is a variable.

An example of guard is: exists t : Tran|isempty(pre(t) ∪ hset(t))
(in the current version of the language not-nested quantifiers can be used).

Having at our disposal a simple meta-programming language, it becomes
easier specifying (even complex) parametric base-level evolutions, such as “for
each marked place p belonging to the preset of t, if there is no inhibitor arc
connecting p and t, add one with cardinality equal to the marking of p”, that
becomes:

Element ::= Node | Arc †

Node ::= �variable� | �constant� | singleton(NodeSet)
Arc ::= < Node , Node , �arc type� >
Expression ::= �digit� | BasicExpr
BasicExpr ::= #�place�‡ | card(Set) | card(Arc) | prio(�transition�)
Predicate ::= BasicExpr RelOp Expression | kind(Arc) EqOp �arc type� |

Node InExpr | Node is connected to Node | isempty(Set)
RelOp ::= < | > | =
EqOp ::= =\= | =
Set ::= {} | { ArcList } | NodeSet | �static subclass� | �color class� |

Element | Set SetOp Set
SetOp ::= ∩ | ∪ | \
ArcList ::= Arc | ArcList , Arc
NodeSet ::= {} | { NodeList } | Pattern | AlgOp (NodeSet) | Node
NodeList ::= Node | NodeList , Node
AlgOp ::= pre | post | hinset
Pattern ::= { �variable� InExpr | Guard }
Guard ::= Predicate | LogOp �variable� InExpr Predicate | not(Guard) |

Guard BoolOp Guard
InExpr ::= ε | in �place� | in NodeSet
LogOp ::= exists | foreach
BoolOp ::= and | or

† Terminals are in non-proportional font, non-terminals are in proportional font.

‡ Terms in �� represent elements whose meaning can be inferred from the model.

Grammar 1: BNF for language expressions.

[
isempty(pattern) → skip �
not(isempty(pattern)) →
pattern* = {};
isolating_pattern = newPlace();
incMark(<isolating_pattern,1>);
(p in Pattern ∩ Place)[true → pattern=pattern* ∪ pre(p) ∪ post(p)];
(t in Pattern ∩ Tran)[true → newArc(<isolating_pattern,t,h,1>)];
shiftDown;

]

Listing 2: CSP code for the isolating pattern subnet

*(p in pre(t)) [#p>0 and card(<p,t,h>)==0 --> addArc({<p,t,h,#p>})]

The code of the freezing algorithm acting on a precomputed influence area
(the box isolate(�patterni�) in figure 5(b)), which is one of the fixed parts
of the meta-program, is given in Listing 2: all base-level transitions that belong
to the pattern, or that can change its local marking (state), are temporarily pre-
vented from firing by adding a new (marked) place to the base-level reification,
to which pattern transitions are connected via inhibitor arcs. A shift-down action

Ph2

fk2

take fks2

release fks2

eat2

think2invite2 chase away2

2

fk1

take fks2

Ph1

fk1

take fks1

release fks1

eat1

think1invite1 chase away1

2

Figure 7: The base-level Petri net modeling the hurried philosophers
problem with two sat philosophers and potentially infinite
to sit.

is then activated to freeze the base-level PN. Unfreezing is simply achieved by
removing the introduced inhibitor place at the end of the evolutionary strategy
(see also figure 5(b)).

4 Reflective Petri Nets in Action

To show our approach in action we consider as a case study a version of the
hurried philosophers problem [Sibertin-Blanc, 2001], a variant of the well known
dining philosophers problem that introduces an high dynamism and mobility
degree: philosophers can join and leave on invitation the dining table. The version
here considered has the following requirements:

– a number of philosophers (at least two) are initially seated at the same table;

– each philosopher can eat only when he/she contemporary gets the two near-
est forks, according to the classical dining philosophers problem;

– philosophers at the table that are not eating have the following additional
capabilities:

• they can invite another philosopher (arbitrarily chosen) to join the table
and sit down on either side if the table capacity has not been exceeded
yet ;

• they can ask one of the adjacent philosopher of leaving the table (if there
are more than two philosophers sitting at the table);

– each philosopher is going around with his own fork; when he/she joins the
table he/she keeps his/her fork, if he/she leaves the table he/she brings
his/her fork.

This represents a simplification with respect to the house of philosophers pre-
sented in [Hoffmann et al., 2005], while preserving its efficacy. We have only a
room with a table and philosophers that do not sit at the table are out of the
system. The invitation and chasing away capabilities provoke the evolution of
the net modeling the dining philosophers. It is necessary to reconfigure the whole
net to add or remove a philosopher, this implies changing adjacencies and fork
sharing.

Figure 7 shows the base-level PN for a minimal (or starting) system con-
figuration, where two philosophers are sitting at the dinning table. The subnet
representing the philosopher control flow is easily recognizable. The fki places
represent forks, that are shared with the adjacent philosophers. Initially places
Phi and fki are marked (m0(Phi) = m0(fki) = 1). The transitions labeled
invite and chase away provide a very abstract representation, respectively, for
invitation and chase away requests issued by a philosopher. An invitation is en-
coded by putting two tokens in a corresponding output place, while a “chase
away” produces only one token. This makes it possible to distinguish these ac-
tions at meta-program level through introspection. After issuing an invitation
or chase away, Phi continues running normally (thereby the self-loops from/to
places Phi). The inhibitor arcs in figure 7 prevents accumulation of identical
requests.

From figure 7, it should be fairly evident how simple is the design of our net,
in particular if compared to the model proposed in [Hoffmann et al., 2005]. No
details related to the net dynamic evolution are hard-wired in the base-level net.
Evolution is delegated to the meta-program, that is automatically activated by
the reflective framework when a philosopher is invited or chased away.

Let us describe the algorithm which is the core of the evolutionary strategy
managing an invite action (Listing 3). We assume that one philosopher (ph) can
invite someone else to sit down on either side. To that purpose, he/she discon-
nects itself from the adjacent fork (fk). The invited philosopher (newph) bears
its own fork, that will be shared by ph, once he/she joins the table. If new

[
VAR ph, newph, fk, newfk, think, wait_fks, takes_fks, release_fks,

ph1, wait_fks1, takes_fks1, isolating_pattern : NODE;
VAR pattern, forks: SET(NODE);

exists p in Place, #p > 1 → // strategy for invite action
// begin pattern computation & isolation
flush(p); // clearing place p
ph = singleton(pre(pre(p))) ; // ph is the inviting phil.
think = singleton(post(ph)\ pre(ph)); // transition ”think”
wait_fks = singleton(post(think)); // place ”wait forks”
take_fks = singleton(post(wait_fks)); // transition ”take forks”
eat = singleton(post(take_fks)); // place ”eat”
release_fks = singleton(post(eat)); // transition ”release forks”
forks = pre(take_fks)\ wait_fks; // forks of ph
[// ph is not eating: one of its forks is busy

#eat = 0 and exists f in forks → fk = f; �
#eat > 0 → break; // ph is eating

];
pattern = {take_fks}; // take fks is the only action to be frozen
isolate(pattern); // isolating procedure and intermediate first shift-down
// do strategy begin: from now on the base-level resumes
deleteArc({<fk,take_fks,i/o>, <release_fks,fk,i/o>}); // fk,ph detached
takes_fks1 = singleton(post(fk)); // identifying a phil. adjacent to ph
wait_fks1 = singleton({px in pre(takes_fks1)\ fk | card(post(px))=1});
ph1 = singleton(pre(pre(wait_fks1)));
// a new philospher-net is created owning newfk

newph = new-phil-net(newfk = newPlace(), fk);
// ph is connected to newfk

newArc({<newfk,take_fks,i/o,1>, <release_fks,newfk,i/o,1>});
incMark({<newph,1>, <newfk,1>}); // places newph and newfk are marked
flush(isolating_pattern); // influence area unfreezing
delNode(isolating_pattern);

// strategy for chase away action
�card({p | p in PHIL }) > 2 and

(exists p in Place, #p == 1 and isempty(post(p)) →
...

]

Listing 3: CSP code for the invite strategy (body of repetitive command)

philosopher’s arrival were reflected on the base-level PN while ph is still eating,
an inconsistent situation would arise due to the sharing of newfk: e.g., after ph
finishes eating, place newfk might (inconsistently) hold two tokens. To avoid
possible incongruence the evolutionary strategy is in charge of controlling (dur-
ing the introspection phase) whether ph is eating or not, temporarily ignoring
the invite request in the first case (a break instruction interrupts the current
iteration of the embedding repetitive command). This is however not sufficient:
transition take forks (the only that can affect the influence area, constituted

by place eatingi in figure 7) must be temporarily inhibited (freezing procedure)
to keep the model semantically consistent.

We cannot use constant symbols to refer to philosophers and forks since the
evolutionary algorithm must be parametric and general (it starts up when any
philosopher seating on the table issues an invite or a chase-away request). Once
verified that the guard of the invite strategy is satisfied, a structural “pattern-
matching” is operated to identify the philosopher (ph) that has issued the re-
quest. In a similar way its adjacent forks, and other nodes of interest (e.g. one
adjacent philosopher), are identified.

The evolutionary strategy is carried out after the freezing/isolation of the
transition take forks. The strategy consists of detaching ph from one of adja-
cent forks fk (arbitrarily chosen between them), introducing a new philosopher-
subnet through a corresponding function call (whose parameters are the new
fork owned by the philosopher and fk, the function body is not indicated being
fairly intuitive), finally connecting ph to the new philosopher’s fork (newfk).

As concerns basic color classes of the corresponding WN model, with respect
to the general schema described in section 3.1.1, a PHIL subclass of Place

might be introduced to distinguish philosophers head-places (Phi).

4.1 Structural base-level analysis

The base-level PN may be analyzed using different techniques. Let us focus on
structural techniques, that are elegant, sound, very efficient, but that in general
are highly affected (and limited) by model complexity. Keeping evolutionary
aspects separated from functional aspects encourages the use of structural tech-
niques.

Operating e.g. the structural algorithms of GreatSPN tool, it is possible
to discover place-invariants, as concerns our case-study (figure 7) they are of
two well-known categories (subscript sum is modulo-n, n being the number of
philosophers): ∀m,∀i : 1 . . . n

m(Phi) + m(eati) + m(wait fksi) = 1, m(eati) + m(fki+1) + m(eati+1) = 1

From that invariants a lot of properties descend: the model is live and
bounded (places invitei and chase awayi are structurally bounded), conse-
quently the state-space contains a maximal home-space, and so on.

Since adjacencies between philosophers on the base-level PN are preserved
by any evolutionary strategy (that might be simply argued looking at the meta-
program code) these properties hold independently of system evolution.

4.2 A conventional model of hurried philosophers

To make a comparison with a traditional modeling approach, we have developed
a model of hurried philosophers using classical Place/Transition nets, that is

si
tti

ng

ea
t3

_2
ea

t2
_1

ea
t1

_3

in
_3

in
_2

in
_1

fk
1

fk
3

fk
2

ea
t3

_1
ea

t2
_3

ea
t1

_2

w
ai

t_
fk

s3
w

ai
t_

fk
s2

w
ai

t_
fk

s1

Ph
3

Ph
2

Ph
1

ta
ke

_f
k3

_2
ta

ke
_f

k3
_1

ta
ke

_f
k2

_1
ta

ke
_f

k2
_3

ta
ke

_f
k1

_3
ta

ke
_f

k1
_2

th
in

k1
th

in
k3

ch
as

e_
aw

ay
1_

2

in
vi

te
1_

2

ch
as

e_
aw

ay
1_

3

in
vi

te
1_

3
in

vi
te

2_
3

ch
as

e_
aw

ay
2_

3

ch
as

e_
aw

ay
2_

1

in
vi

te
2_

1

ch
as

e_
aw

ay
3_

1

in
vi

te
3_

1

ch
as

e_
aw

ay
3_

2

in
vi

te
3_

2

re
le

as
e_

fk
1_

2
re

le
as

e_
fk

1_
3

re
le

as
e_

fk
2_

3
re

le
as

e_
fk

2_
1

re
le

as
e_

fk
3_

1
re

le
as

e_
fk

3_
2

th
in

k2

in
_1

in
vi

te
3_

1

fk
1

in
vi

te
3_

1

in
_1

in
vi

te
3_

1

_3 _2
fk

1

ch
as

e_
aw

ay
3_

1

in
_1

ch
as

e_
aw

ay
3_

1

_3
_2

_3

_2

_3
_2

_3_2
_3

_2

fk
2

re
le

as
e_

fk
3_

2

fk
1

re
le

as
e_

fk
3_

1

fk
1

re
le

as
e_

fk
2_

1

fk
3

re
le

as
e_

fk
1_

3

in
_2

in
vi

te
3_

2

fk
2

in
vi

te
3_

2

in
_2

ch
as

e_
aw

ay
3_

2

in
_1

in
vi

te
2_

1

in
_1

in
vi

te
2_

1

fk
1

ch
as

e_
aw

ay
2_

1

in
_1

ch
as

e_
aw

ay
2_

1

in
_3

in
vi

te
1_

3

in
_3

in
vi

te
1_

3
fk

3

in
vi

te
1_

3

fk
3

ch
as

e_
aw

ay
1_

3

in
_3

ch
as

e_
aw

ay
1_

3

fk
1

ta
ke

_f
k2

_1
fk

1

ta
ke

_f
k3

_1

fk
1

ta
ke

_f
k3

_2
fk

2

ta
ke

_f
k3

_2

F
ig

ur
e

8:
C

la
ss

ic
P
et

ri
ne

t
m

od
el

in
g

th
e

hu
rr

ie
d

ph
ilo

so
ph

er
s

pr
ob

le
m

w
it

h
tw

o
ph

ilo
so

ph
er

s
al

re
ad

y
di

ni
ng

an
d

th
e

po
ss

ib
ili

ty
of

ad
di

ng
on

e
m

or
e

ph
ilo

so
ph

er
at

th
e

m
os

t.

shown in figure 8. The GreatSPN format of the net in figure 8 can be downloaded
from http://homes.dico.unimi.it/~cazzola/dynamic-2of3.rar.

Classical PNs have a fixed topology, so all dynamism/evolution of the system
must be hard-wired in the model and bypassed when not in use. This task
requires some expertise in PN modeling, and however might result in an incorrect
(or partial) description of system behavior. What is worst, system analysis is
polluted by a great deal of details that concern its evolution.

The intricacy of model in figure 8 is such that we skip any detailed descrip-
tion, focusing on a few essential aspects. First, the modeler has to fix the PN
size according to the maximal (theoretical) system size (in our case, the table
capacity). The net in figure 8 refers to a small table of size 3, where only two
philosophers are currently seated. It corresponds to the situation modeled in
figure 7.

The third philosopher appears in the picture despite he/she is currently out
of the system. The state (in/out) of a philosopher is thus described by a place
(ini). When the philosopher state is in, he/she can issue an “invite” to any
out philosopher, or a “chase away” to a in adjacent philosopher. As usual a
philosopher keeps its own fork either when he/she joins or leaves the table.
The main difficulty consists of reproducing the correct forks adjacencies with
respect to philosophers: when a philosopher eats, he/she must keep its own fork,
and the “nearest” among the available ones. That implies splitting any action
performed by a philosopher (but the “thinking” action) into a number of copies
that depends on the number n of philosophers that could be in the system (for
n = 3 actions are duplicated), and that is combinatorially growing.

The result is a model that is unreadable also for small system size. A model
parametric in the table size could be defined using High-Level Petri Nets (e.g.
CPN or WN), but in that case modeling skill becomes a requirement. What is
relevant, however, and that does not depend on the adopted formalism, is rep-
resented by two critical aspects: liveness and boundedness (and other related
properties) cannot be inferred by structural analysis, but only via state-space
inspection, that however quickly reveals unfeasible as the system size grows.
The other, probably more significant, aspect is that the model in figure 8 repro-
duces only in a small part the dynamism/mobility of the original system, where
philosophers can freely move along the table.

5 Related works

Although many other models of concurrent and distributed systems have been
developed, Petri Nets are still considered a central model for concurrent sys-
tems with respect to both the theory and the applications due to the natural
way they allow to represent reasoning on concurrent active objects which share

http://homes.dico.unimi.it/~cazzola/dynamic-2of3.rar

resources and their changing states. Despite their modeling power (PN with
inhibitor arcs are Turing-equivalent) however, classical PN are often consid-
ered unsuitable to model real systems. For that reason, several High Level PN
(HLPN) paradigms (Colored PN, Predicate/Transition Nets, Algebraic Petri
nets) [Jensen and Rozenberg, 1991] have been proposed in the literature over
the last two decades to provide modelers with a more flexible and parametric
formalism able to exploit the symmetric structure of most artificial discrete-event
systems.

Modern information systems are more and more characterized by a dynam-
ic/reconfigurable (distributed) topology and they are often conceived as self-
evolving structures, able to adapt their behavior and their functionality to en-
vironmental changes and new user needs. Evolutionary design is now a diffuse
practice, and there is a growing demand for modeling/simulation tools that can
better support the design phase. Both PN and HLPN are characterized by a fixed
structure (topology), so many research efforts have been devoted, especially in
the last two decades, in trying to extend PN with dynamical features. Follows a
non-exhaustive list of proposals appeared in the literature.

In [Valk, 1978], the author is proposing his pioneering work: self-modifying
nets. Valk’s self-modifying nets introduce dynamism via self modification. More
precisely the flow relation between a place and a transition is a linear func-
tion of the place marking. Techniques of linear algebra used in the study of the
structural properties of PN can be adapted in this extended framework. Only
simple evolution patterns can be represented using this formalism. Another ma-
jor contribution of Valk is the so-called nets-within-nets paradigm [Valk, 1998],
a multi-layer approach, where tokens flowing through a net are in turn nets. In
his work, Valk takes an object as a token in a unary elementary Petri net system,
whereas the object itself is an elementary net system. So, an object can migrate
across a net system. This bears some resemblance with logical agent mobility.
Even if in the original Valk’s proposal no dynamic changes are possible, many
dynamic architectures introduced afterward (including in some sense also the
approach proposed in this paper) rely upon his paradigm.

Some quite recent proposals have extended Valk’s original ideas. [Badouel
and Darondeau, 1997] has introduced a subclass of self-modifying nets. The
considered nets appear as stratified sums of ordinary nets and they arise as a
counterpart to cascade products of automata via the duality between automata
and nets. Nets in this class, called stratified nets, cannot exhibit circular depen-
dences between places: inscription on flow arcs attached to a given place depends
at most on the content of places in the lower layers. As an attempt to add model-
ing flexibility, [Badouel and Oliver, 1998] defined a class of high level Petri nets,
called reconfigurable nets, that can dynamically modify their own structure by
rewriting some of their components. Boundedness of a reconfigurable net can be

decided by calculating its covering tree. Moreover such a net can be simulated
by a self-modifying Petri net. The class of reconfigurable nets thus provides a
subclass of self-modifying Petri nets for which boundedness can be decided.

Modeling mobility, both physical and logical, is another active subject of
ongoing research. Mobile and dynamic Petri nets [Asperti and Busi, 1996] in-
tegrate Petri nets with RCHAM (Reflective Chemical Abstract Machine) based
process algebra. In dynamic nets tokens are names for places, an input token
of a transition can be used in its postset to specify a destination, and moreover
the creation of new nets during the firing of a transition is also possible. Mobile
petri nets handle mobility expressing the configuration changing of communica-
tion channels among processes.

Tokens in Petri nets, even in self-modifying, mobile/dynamic and reconfig-
urable nets, are passive, whereas agents are active. To bridge the gap between
tokens and agents, or active objects, many authors have proposed variations on
the theme of nets-within-nets. In [Farwer and Moldt, 2005], objects are studied
as higher-level net tokens having an individual dynamical behavior. Object nets
behave like tokens, i.e., they are lying in places and are moved by transitions.
In contrast to ordinary tokens, however, they may change their state. By this
approach an interesting two-level system modeling technique is introduced. [Xu
et al., 2003] proposes a two layers approach. From the perspective of system’s
architecture, it presents an approach to modeling logical agent mobility by using
Predicate Transition nets as formal basis for the dynamic framework. Reference
nets proposed in [Kummer, 1998] are another formalism based on Valk’s work.
Reference nets are a special high level Petri net formalism that provide dynamic
creation of net instances, references to other reference nets as tokens, and com-
munication via synchronous channels (Java is used as inscription language).

Some recent proposals have some similarity with the work we are presenting
in this paper or, at least, are inspired by similar aims. In [Cabac et al., 2005], the
authors present the basic concepts for a dynamic architecture modeling (using
nets-within-nets) that allows active elements to be nested in arbitrary and dy-
namically changeable hierarchies and enables the design of systems at different
levels of abstractions by using refinements of net models. The conceptual mod-
eling of such architecture is applied to specify a software system that is divided
into a plug-in management system and plug-ins that provide functionality to
the users. By combining plug-ins, the system can be dynamically adapted to the
users needs. In [Hoffmann et al., 2005], the authors introduce the new paradigm
of nets and rules as tokens, where in addition to nets as tokens also rules as tokens
are considered. The rules can be used to change the net structure and behavior.
This leads to the new concept of high-level net and rule systems, which allows
to integrate the token game with rule-based transformations of P/T-systems.
The new concept is based on algebraic nets and graph transformation systems.

Finally, in [Odersky, 2000], the author introduces the functional nets that com-
bine key ideas of functional programming and Petri nets to yield a simple and
general programming notation. They have their theoretical foundation in join
calculus. Over the last decade an operational view of program execution based
on rewriting has become widespread. In this view, a program is seen as a term
in some calculus, and program execution is modeled by stepwise rewriting of the
term according to the rules of the calculus.

All these formalisms, however, set up new hybrid (HL)PN-based paradigms.
While the expressive power has increased, the cognitive simplicity, which is the
most important advantage of Petri nets, has decreased as well. In [Badouel and
Oliver, 1998], the authors argued that the intricacy of these models leaves little
hope to obtain significant mathematical results and/or automated verification
tools in a close future. The approach we are presenting differs from the previous
ones mainly because it achieves a satisfactory compromise between expressive
power and analysis capability, through a quite rigorous application of classical
reflection concepts in a consolidated (HL)PN framework.

6 Conclusions and Future Work

Covering the evolutionary aspects of software systems has been widely recog-
nized as one of the crucial challenges of modern software engineering. Many
applications need to be updated or extended with new characteristics during
their lifecycle. A good evolution has to pass through the evolution of the design
information of the system itself.

PN are a central formalism for modeling concurrent and distributed systems.
In this paper, we have faced the problem of the evolution of a PN model through
the definition of a reflective architecture that allows the meta-program to observe
and then to evolve the base-level PN. With this approach the model of the
system and the model of the evolution (called evolutionary strategy) are kept
separated, granting, therefore, the opportunity of analyzing the model without
useless details. The evolutionary aspect is orthogonal to the functional aspect of
the system.

The work here presented extends a previous one by the same authors, refining
the evolutionary framework, and introducing a non-blocking mechanism for the
base-level while an evolutionary strategy is in execution.

Ongoing research is in two different directions. We are planning to extend
the GreatSPN tool for directly supporting our approach, both in the design and
in the analysis phase. At the moment we are using two different formalisms for
the base-level PN (ordinary PN) and the meta-level program (colored PN). In
general it might be convenient to adopt the same formalism (may be algebraic
PN) for both levels, this will give origin to the reflective tower allowing the
designer to model also the evolution of the evolution of the system, and so on.

References

[Asperti and Busi, 1996] Asperti, A. and Busi, N. (1996). Mobile Petri Nets. Technical
Report UBLCS-96-10, Università degli Studi di Bologna, Bologna, Italy.

[Badouel and Darondeau, 1997] Badouel, E. and Darondeau, P. (1997). Stratified
Petri Nets. In Chlebus, B. S. and Czaja, L., editors, Proceedings of the 11th In-
ternational Symposium on Fundamentals of Computation Theory (FCT’97), LNCS
1279, pages 117–128, Kraków, Poland. Springer.

[Badouel and Oliver, 1998] Badouel, E. and Oliver, J. (1998). Reconfigurable Nets,
a Class of High Level Petri Nets Supporting Dynamic Changes within Workflow
Systems. IRISA Research Report PI-1163, IRISA.

[Bernardi et al., 2001] Bernardi, S., Donatelli, S., and Horvàth, A. (2001). Implement-
ing Compositionality for Stochastic Petri Nets. Journal of Software Tools for Tech-
nology Transfer, 3(4):417–430.

[Best, 1986] Best, E. (1986). COSY: Its Relation to Nets and CSP. In Brauer, W.,
Reisig, W., and Rozenberg, G., editors, Petri Nets: Central Models and Their Prop-
erties, Advances in Petri Nets (Part II), LNCS 255, pages 416–440. Springer, Bad
Honnef, Germany.

[Cabac et al., 2005] Cabac, L., Duvignau, M., Moldt, D., and Rölke, H. (2005). Model-
ing Dynamic Architectures Using Nets-Within-Nets. In Ciardo, G. and Darondeau,
P., editors, Proceedings of the 26th International Conference on Applications and
Theory of Petri Nets (ICATPN 2005), LNCS 3536, pages 148–167, Miami, FL, USA.
Springer.

[Capra and Cazzola, 2005] Capra, L. and Cazzola, W. (2005). A Petri-Net Based Re-
flective Framework. In Arbab, F. and Sirjani, M., editors, Proceedings of the IPM
International Workshop on Foundations of Software Engineering (FSEN’05), Elec-
tronic Notes in Theoretical Computer Science 159, pages 41–59, Tehran, Iran. Else-
vier.

[Capra et al., 2005] Capra, L., De Pierro, M., and Franceschinis, G. (2005). A High
Level Language for Structural Relations in Well-Formed Nets. In Ciardo, G. and
Darondeau, P., editors, Proceeding of the 26th International Conference on Applica-
tion and Theory of Petri Nets, LNCS 3536, pages 168–187, Miami, USA.

[Cazzola, 1998] Cazzola, W. (1998). Evaluation of Object-Oriented Reflective Models.
In Proceedings of ECOOP Workshop on Reflective Object-Oriented Programming and
Systems (EWROOPS’98), in 12th European Conference on Object-Oriented Pro-
gramming (ECOOP’98), Brussels, Belgium. Extended Abstract also published on
ECOOP’98 Workshop Readers, S. Demeyer and J. Bosch editors, LNCS 1543, ISBN
3-540-65460-7 pages 386-387.

[Cazzola et al., 2004] Cazzola, W., Ghoneim, A., and Saake, G. (2004). Software Evo-
lution through Dynamic Adaptation of Its OO Design. In Ehrich, H.-D., Meyer,
J.-J., and Ryan, M. D., editors, Objects, Agents and Features: Structuring Mecha-
nisms for Contemporary Software, Lecture Notes in Computer Science 2975, pages
69–84. Springer-Verlag, Heidelberg, Germany.

[Chiola et al., 1990] Chiola, G., Dutheillet, C., Franceschinis, G., and Haddad, S.
(1990). On Well-Formed Coloured Nets and Their Symbolic Reachability Graph.
In Proceedings of the 11th International Conference on Application and Theory of
Petri Nets,, pages 387–410, Paris, France.

[Chiola et al., 1993] Chiola, G., Dutheillet, C., Franceschinis, G., and Haddad, S.
(1993). Stochastic Well-Formed Coloured Nets for Symmetric Modelling Applica-
tions. IEEE Transactions on Computers, 42(11):1343–1360.

[Chiola et al., 1995] Chiola, G., Franceschinis, G., Gaeta, R., and Ribaudo, M. (1995).
GreatSPN 1.7: GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets.
Performance Evaluation, 24(1-2):47–68.

[Farwer and Moldt, 2005] Farwer, B. and Moldt, D., editors (2005). Object Petri Nets,
Process, and Object Calculi, Hamburg, Germany. Universität Hamburg, Fachbereich

Informatik.
[Hoare, 1985] Hoare, C. A. R. (1985). Communicating Sequential Processes. Prantice

Hall.
[Hoffmann et al., 2005] Hoffmann, K., Ehrig, H., and Mossakowski, T. (2005). High-

Level Nets with Nets and Rules as Tokens. In Ciardo, G. and Darondeau, P., editors,
Proceedings of the 26th International Conference on Applications and Theory of Petri
Nets (ICATPN 2005), LNCS 3536, pages 268–288, Miami, FL, USA. Springer.

[Hürsch and Videira Lopes, 1995] Hürsch, W. and Videira Lopes, C. (1995). Separa-
tion of Concerns. Technical Report NU-CCS-95-03, Northeastern University, Boston.

[Jensen and Rozenberg, 1991] Jensen, K. and Rozenberg, G., editors (1991). High-
Level Petri Nets: Theory and Applications. Springer-Verlag.

[Kavi et al., 1995] Kavi, K. M., Sheldon, F. T., Shirazi, B., and Hurson, A. R. (1995).
Reliability Analysis of CSP Specifications Using Petri Nets and Markov Processes. In
Proceedings of the 28th Annual Hawaii International Conference on System Sciences
(HICSS-28), pages 516–524, Kihei, Maui, Hawaii, USA. IEEE Computer Society.

[Kummer, 1998] Kummer, O. (1998). Simulating Synchronous Channels and Net In-
stances. In Desel, J., Kemper, P., Kindler, E., and Oberweis, A., editors, Proceed-
ings of the Workshop Algorithmen und Werkzeuge für Petrinetze, volume 694 of
Forschungsberichte, pages 73–78. Universität Dortmund, Fachbereich Informatik.

[Maes, 1987] Maes, P. (1987). Concepts and Experiments in Computational Reflection.
In Meyrowitz, N. K., editor, Proceedings of the 2nd Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’87), volume 22 of Sig-
plan Notices, pages 147–156, Orlando, Florida, USA. ACM.

[Odersky, 2000] Odersky, M. (2000). Functional Nets. In Smolka, G., editor, Proceed-
ings of the 9th European Symposium on Programming (ESOP 2000), LNCS 1782,
pages 1–25, Berlin, Germany. Springer.

[Sibertin-Blanc, 2001] Sibertin-Blanc, C. (2001). The Hurried Philosophers. In Agha,
G., De Cindio, F., and Rozenberg, G., editors, Concurrent Object-Oriented Program-
ming and Petri Nets, Advances in Petri Nets, LNCS 2001, pages 536–538. Springer.

[Valk, 1978] Valk, R. (1978). Self-Modifying Nets, a Natural Extension of Petri Nets.
In Ausiello, G. and Böhm, C., editors, Proceedings of the Fifth Colloquium on Au-
tomata, Languages and Programming (ICALP’78), LNCS 62, pages 464–476, Udine,
Italy. Springer.

[Valk, 1998] Valk, R. (1998). Petri Nets as Token Objects: An Introduction to Ele-
mentary Object Nets. In Desel, J. and Silva, M., editors, Proceedings of the 19th
International Conference on Applications and Theory of Petri Nets (ICATPN 1998),
LNCS 1420, pages 1–25, Lisbon, Portugal. Springer.

[Xu et al., 2003] Xu, D., Yin, J., Deng, Y., and Ding, J. (2003). A Formal Architec-
tural Model for Logical Agent Mobility. IEEE Transactions on Software Engineering,
29(1):31–45.

	1 Introduction
	2 Well-formed Nets
	3 A Reflective Petri Net Model
	3.1 Reflective Framework
	3.1.1 Color Definitions

	3.2 Base-Level Reification
	3.3 Evolutionary Framework Structure/Behavior
	3.3.1 Base-level Introspection

	3.4 The Evolutionary Strategy
	3.5 Casually connecting base-level and meta-program
	3.5.1 Shift-up action
	3.5.2 Shift-down action
	3.5.3 Putting all together

	3.6 Meta-Language Basic Elements

	4 Reflective Petri Nets in Action
	4.1 Structural base-level analysis
	4.2 A conventional model of hurried philosophers

	5 Related works
	6 Conclusions and Future Work

